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1. Objectives 
In this project, the overall objectives are developments of electrically driven single photon source that 
operate near room temperature by using epitaxially grown GaN nanostructures. In order to realize the 
electrically driven single photon source operating near room temperature, we will grow high-quality GaN 
quantum dots embedded in AlN thin films, and fabricate single photon emitting tunnel diodes that have 
GaN quantum dots in a microcavity structure with nano-sized aperture. Single electron and hole injection, 
which is the precondition for single photon emission, will be driven by using Coulomb blockade effect in 
GaN quantum dots surrounded by AlN tunnel barriers. Figure 1 shows a schematic of the proposed single 
photon emitting diode. 
 

 
 

Fig. 1. Schematic of the proposed single photon emitting diode 
 
 
2. Status of effort 
We have designed the structure for single photon emitting devices that have GaN nanostructures 
embedded into the microcavity structure. The design of the device structure was accomplished using 
Rsoft FULLWAVE simulation. We have grown GaN quantum dots with small size and low density using 
metalorganic chemical vapor deposition (MOCVD). Additionally, Al(Ga)N/GaN heterostructure with 
high quality are grown because it is important to achieve the high performance of single photon emitting 
diodes. In order to develop an efficient single photon source, an optical cavity structure will be applied. 
We have optimized the growth condition of Al(Ga)N/GaN DBR for the microcavity structure. 
 
 
3. Abstract 
We have grown InGaN quantum dots on GaN layer by the Stranski-Krastanow (S-K) growth mode using 
MOCVD with various conditions for small size as a few nanometers and low density of ~109/cm2. Since 
the growth of InGaN quantum dots is very sensitive to the growth condition, the formation of InGaN 
quantum dots can be controlled by growth parameter such as the growth temperature, time and the flow 
rate of MO sources. Especially, InGaN quantum dots with small size and low density are required to 
realize electrically driven single photon sources. InGaN quantum dots are characterized by using AFM 
and photoluminescence (PL) measurement to analyze the structural and optical properties. Additionally, it 
is required to embed GaN quantum dots into the microcavity with a small volume and high quality factor 
for a high internal quantum efficiency and photon collection efficiency of single photon emitters. We 
have optimized Al(Ga)N/GaN distributed Bragg Reflectors (DBRs) for a cavity mode and 38% of 
reflectivity can be obtained using 5 pairs of Al0.2Ga0.8N/GaN DBR instead of 30 pairs. 
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Place: Hanyang University, Seoul, Korea 
Title: Gallium Nitride UV Single Photon Source 
Abstract: The overall objectives of our research are developments of electrically driven single photon 

source that operates near room temperature by using epitaxially grown GaN nanostructures. In 
order to realize the electrically driven single photon source operating near room temperature, we 
first grow the high-quality InGaN quantum dots (QDs) embedded in AlN thin films. For the 
InGaN QDs embedded in AlN films, a high quality of AlN layer was obtained at high 
temperature by using metal-orgranic chemical vapor deposition (MOCVD). After the growth of 
AlN epilayer, InGaN QDs on an AlN epilayer were demonstrated by the Stranski-Krastanow (S-
K) growth mode. The structural and optical properties of InGaN QDs were analyzed by using 
atomic force microscopy (AFM) and photoluminescence (PL) measurement, respectively. In 
addition, we demonstrated a cavity mode by using AlN/GaN pairs as distributed Bragg 
reflectors (DBRs). AlN/GaN DBRs was optimized by using a simulation program (Rsoft 
FULLWAVE), and the thickness of each epilayer can be calculated by following equation, d = 
λ/4n, where d and λ are the thicknesses of epilayer and wavelength, respectively. The 
characteristics of the emission from InGaN QDs embedded in a microcavity will be discussed. 
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1) Simulation of the devices 
The design of device structure is accomplished using Rsoft FULLWAVE simulation. Figure 2 (a) and (b) 
show the simulation structure for 30 pairs of AlGaN/GaN DBR and simulated transmittance. The 
composition of Al is 20 % in AlGaN layer and the thickness of each layer can be calculated, respectively 
for the target wavelength of 400 nm. The simulated transmittance is lowest at wavelength of 400 nm as 
shown in Fig. 2 (b). This indicates that the reflectivity of 30 pairs of AlGaN/GaN DBR is over 90%. 
 
 



 
 

Fig. 2. (a) Simulation structure for 30 pairs of AlGaN/GaN DBR and (b) simulated transmittance 
 
Figure 3 (a) and (b) show the refractive index profile of device structure and the intensity as a function of 
wavelength. The position of quantum dots layer is 122 nm from top of cavity. Based on the structure as 
shown in Fig. 4 (a), the resonant wavelength is 400 nm inside the cavity. Therefore, the simulation result 
is comparable to the calculated result. 
 

 
 

Fig. 3. (a) Refractive index profile of device structure and intensity as a function of wavelength 
 
2) Growth and characterization 
Figure 4 shows AFM images of InGaN quantum dots grown on GaN layer by Stranski-Krastanow (S-K) 
growth mode. The formation of quantum dots is incomplete at the growth time of 7 sec. Total density of 
InGaN quantum dots is increased with increasing the growth time. The size and height of InGaN quantum 
dots are 20~30 nm and 1~2 nm, respectively indicating that aspect ratio is small. 
 



 
 

Fig. 4. AFM images of InGaN quantum dots grown on GaN layer 
 
Figure 5 (a) and (b) show photoluminescence (PL) measurement of InGaN quantum dots with single layer 
at 300K (room temperature) and 6K, respectively. The PL peak at 300K shows the wavelength nearby 
400 nm. The P-1 cannot be measured at RT since carriers in the wetting layer vanish at nonradiative 
recombination centers such as defect. 
 

 
 

Fig. 5. PL measurement of InGaN quantum dots with single layer (a) at 300K and (b) at 6K 
 
Figure 6 (a) and (b) show the schematic diagram of InGaN quantum dots with 5 pairs and PL 
measurement of this sample as a function of excitation power. There is no blue shift with excitation 
power. This result is attributed to the small Quantum-Confined Stark Effect (QCSE) and negligible 
piezoelectric field in InGaN quantum dots. 
 

 
 

Fig. 6. (a) Schematic diagram of InGaN quantum dots with 5 pairs and (b) PL measurement as a function 
of excitation power 



Figure 7 shows SEM images of 5 pairs of AlN/GaN and AlGaN/GaN DBR structures. In case of 
AlN/GaN DBR, there is a crack on the surface with growth pressure. This is due to the large lattice 
mismatch between GaN and AlN. However, AlGaN/GaN DBR structures have a smooth surface without 
crack because the lattice mismatch is reduced.  
 

 
 

Fig. 7. SEM images of 5 pairs of AlN/GaN and AlGaN/GaN DBR structures 
 
Figure 8 shows XRD measurements of AlN/GaN and AlGaN/GaN DBR structures. The thickness of each 
period can be calculated based on the oscillation peak. Additionally, the thickness of one period in 
Al0.2Ga0.8N/GaN DBR should be 81.2 nm for target wavelength of 400 nm. Therefore, the optimized 
thickness can be obtained by controlling the growth conditions for 400 nm. 
 

 
 

Fig. 8. XRD measurements of AlN/GaN and AlGaN/GaN DBR structures 
 
Figure 9 (a) and (b) show the reflectivity of DBR structures. The 5 pairs of Al0.2Ga0.8N/GaN DBR instead 
of 30 pairs show the highest reflectivity of 38% as shown in Fig. 4 (a). This value is higher than the 



reported reflectance of 5 pairs of Al0.2Ga0.8N/GaN DBR structure. The stop band width of 
Al0.2Ga0.8N/GaN DBR structure is 7 nm. 
 

 
 

Fig. 9. (a) reflectivity of DBR structures as a function of wavelength and (b) reflectance of DBR 
structures with number of periods (reported) 
 
For the high reflectivity of AlxGa1-xN/GaN DBR, the pairs & Al composition should be increased. Figure 
10 shows SEM images of 30 pairs of Al0.2Ga0.8N/GaN DBR structure with growth interruption time. The 
surface morphology of DBR is improved as the growth interruption time was increased due to the 
enhanced surface mobility of Al adatom. 
 

 
 

Fig. 10. SEM images of 30 pairs of Al0.2Ga0.8N/GaN DBR structure with growth interruption time 
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